
Communication

Direct Examination of HO Activation by a Heme Peroxidase

Justine P. Roth, and Christopher J. Cramer

J. Am. Chem. Soc., 2008, 130 (25), 7802-7803 • DOI: 10.1021/ja802098c • Publication Date (Web): 31 May 2008

Downloaded from http://pubs.acs.org on February 8, 2009

More About This Article

Additional resources and features associated with this article are available within the HTML version:

- Supporting Information
- Access to high resolution figures
- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

View the Full Text HTML

Direct Examination of H₂O₂ Activation by a Heme Peroxidase

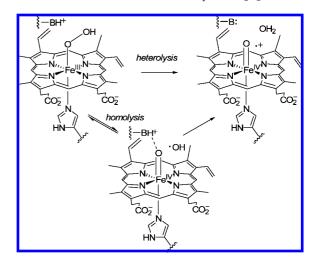
Justine P. Roth*,[†] and Christopher J. Cramer*,[‡]

Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore Maryland 21218, and Department of Chemistry and Research Computing Center, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55410

Received March 20, 2008; E-mail: jproth@jhu.edu; cramer@umn.edu

Heavy atom isotope effects are powerful probes of mechanism, especially when analyzed using appropriate theoretical formalisms.¹ Interpreting kinetic isotope effects (KIEs) for enzymatic reactions, however, can be a particular challenge when there is uncertainty in the reactive species involved and/or the reaction coordinate.² Presented here is an examination of a classic heme peroxidase reaction; an approach based on oxygen isotope effects is outlined that should be generally applicable to the study of other H₂O₂-utilizing enzymes as well.

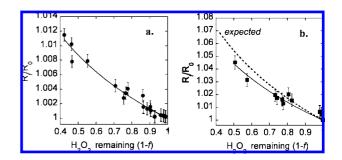
Though horseradish peroxidase (HRP) has been extensively studied,^{3–5} the O–O bond cleavage step has eluded direct observation.^{4b} Computational efforts have sought to model this step in HRP⁶ as well as in other heme enzymes that consume cellular H_2O_2 .⁷ The experimental results afforded by the present work provide a critical calibration for these calculations.


At least two pathways are possible for peroxidase-mediated H_2O_2 activation (Scheme 1). It is widely accepted that HRP reacts by the Poulos-Kraut mechanism⁸ in which O–O heterolysis leads to the Fe^{IV}=O porphyrin π -cation radical (compound I, denoted Fe^{IV}O·⁺) and H₂O. The reaction in HRP is facilitated by H⁺ transfer from His42 to O_β of a Fe^{III}O_αO_βH intermediate.^{3c,4a} Alternatively, O–O homolysis in enzymes that lack the H⁺ donor can produce the Fe^{IV}=O porphyrin (compound II, Fe^{IV}O) and an associated •OH.^{7,9} Proton-coupled electron transfer within this high-energy intermediate could subsequently form compound I.

We applied oxygen isotope fractionation to examine the reaction of HRP¹⁰ under steady-state conditions. Analyzing the change of ¹⁸O/¹⁶O in the H₂O₂ from natural abundance gives the competitive ¹⁸O KIE, $[k_{cat}/K_{M}(H^{16}O^{16}OH)]/[k_{cat}/K_{M}(H^{16}O^{18}OH)]$, which measures all steps beginning with H₂O₂ encounter, leading up to and including the first irreversible step.^{1c} Ground-state and transitionstate structures from density functional theory (DFT) calculations were used to analyze the isotopic results.

The technique used to measure the ¹⁸O KIE on the reaction of Fe^{III}HRP with H_2O_2 is modified from that originally developed to study reactions of O_2 .^{1c} The modifications include (i) the use of anaerobic solutions and (ii) the introduction of a step using acidic Ce^{IV} to quench the enzymatic reaction and convert all H_2O_2 to O_2 .¹¹ The isolated O_2 is then completely combusted to CO₂ for analysis by isotope ratio mass spectrometry.¹²

Isotope fractionation plots (Figure 1) reveal ¹⁸O enrichment of the unreacted H₂O₂ due to HRP turnover. R_0 is the ¹⁸O/¹⁶O of the H₂O₂ prior to adding HRP and R_f is the ¹⁸O/¹⁶O at fractional consumption, *f*, of H₂O₂. 2-Methoxyphenol (1–5 mM) was present (KPⁱ buffer pH 7.2, $\mu = 0.1$ M, 22 °C) to reduce the oxidized HRP and prevent production of O₂ by H₂O₂ disproportionation. The ¹⁸Ofractionation indicates an ¹⁸O KIE = 1.0127 ± 0.0008.


A labeling experiment was conducted to test for ¹⁸O exchange from H₂O into the unreacted H₂O₂ (Figure 1b). The results reveal ¹⁸O scrambling, the $R_{\rm f}/R_0$ falling within error of that predicted for a reaction where all of the ¹⁸O in the enriched H₂O is rapidly distributed into the H₂O₂. In control experiments at low conversions Scheme 1. Alternative Mechanisms of Enzymatic H₂O₂ Activation

where $f \approx 0$, $R_{\rm f}/R_0$ is ~1.00, indicating no ¹⁸O exchange from H₂O in the absence of H₂O₂ consumption by HRP.

Results which suggest the possibility of reversible O–O bond formation involving electrophilic Fe oxo and peroxo species have been inferred from studies of synthetic model compounds.¹³ Such reactivity relates to the proposal of nucleophilic attack by [–]OH upon a Mn oxo intermediate in the O₂ evolving complex of photosystem II.¹⁶ To the best of our knowledge, reversible O–O cleavage/formation has not been proposed in a heme protein.

DFT calculations were performed to evaluate structures relevant to H_2O_2 activation by HRP.¹⁴ Equilibrium isotope effects (EIEs) were derived from full sets of vibrational frequencies following Bigeleisen's formalism (eq 1).¹ Isotopic terms include zero point energy (ZPE), vibrationally excited states (EXC) and mass and moments of inertia (MMI).¹⁴ The EIE_{calcd} in Table 1 is the average of columns 3 and 4 which differ with regard to the isotope attached to Fe; that is, the small isotope effect due to the preferred

Figure 1. (a) Isotope fractionation due to $\text{Fe}^{\text{III}}\text{HRP} + \text{H}_2\text{O}_2$. Data are fitted to: ¹⁸O KIE = $[1 + \ln (R_{\text{f}}/R_0)/\ln (1 - f)]^{-1.1\text{c}}$ (b) The same reaction as in panel **a** performed in buffer containing 1.2% by volume ¹⁸O-water, see ref 10. The dashed curve is based upon the ¹⁸O KIE in panel **a** multiplied by the 6-fold enrichment of ¹⁸O over its level at natural abundance (i.e., 0.2%).

[†] Johns Hopkins University.

Table 1.	Calculated	¹⁸ O	EIEs	for	Reactions	of HRP	with H ₂ O ₂	а
----------	------------	-----------------	------	-----	-----------	--------	------------------------------------	---

	$Fe^{III}HRP + H_2O_2 \rightleftharpoons$	Fe-160/180	Fe-180/160	EIE_{calcd}
1	Fe ^{III} OOH ($\omega = 21.9^{\circ}$) ^{b,c}	1.0031	1.0042	1.0037
2	Fe ^{III} OOH ($\omega = 161.3^{\circ}$) ^b	1.0082	1.0073	1.0078
3	Fe ^{III} O _{α} O _{β} H, MeImH ⁺ $-O_{\alpha}^{b,d}$	1.0038	1.0033	1.0036
4	$Fe^{III}O_{\alpha}O_{\beta}H,MeImH^+ - O_{\beta}^{b,e}$	1.0058	1.0159	1.0109
5	$Fe^{IV}(O)^{f} + \cdot OH$	1.0484	1.0115	1.0300
6	$Fe^{IV}(O) \cdot +g + H_2O$	1.0097	1.0112	1.0105

^{*a*} Calculated using Gaussian 03^{15} and the *m*PW functional.¹⁴ ^{*b*} S = 1/2. ^c H-bonding occurs to a pyrrole N. ^d $\omega = 42.3^{\circ}$. ^e $\omega = 24.8^{\circ}$. ^f S = 1. g S = 3/2

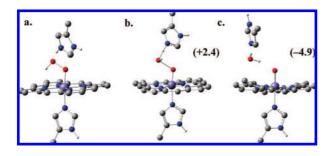


Figure 2. The reactant (a), TS (b), and product of O-O heterolysis in the gas phase. Potential energies are quoted as (kcal mol^{-1}) relative to structure **a**.

coordination of ¹⁸O to Fe or H was neglected.^{1c,14} Entries 3 and 4 include H-bonding to protonated methylimidazole (MeImH⁺) as a model for His42H⁺, while entries 1, 2, 5, and 6 do not. The measured ^{18}O KIE \ll ^{18}O EIE_{calcd} for entry 5 provides evidence against reversible O–O homolysis (as does the computed $E_{act} >$ 70 kcal mol⁻¹).¹⁴ Neither reversible formation of Fe^{III}OOH nor $Fe^{IV}O^{\bullet+}$ can be excluded on the basis of the size of the ¹⁸O EIE_{calcd}. It follows that the first irreversible step which limits $k_{cat}/K_{M}(H_2O_2)$ occurs after formation of either intermediate.

¹⁸O EIE =
$${}^{16,16}K/{}^{16,18}K$$
 = ZPE × EXC × MMI (1)

¹⁸O KIE =
$$\left({}^{16,16} \nu_{\rm RC} / {}^{16,18} \nu_{\rm RC} \right) \left({}^{16,16} K_{\rm TS} / {}^{16,18} K_{\rm TS} \right)$$
 (2)

Optimized structures for MeImH⁺-assisted O-O heterolysis are shown in Figure 2. Transition-state theory permits calculation of the ¹⁸O KIE from vibrational frequencies according to eq 2,¹ where K_{TS} is a pseudoequilibrium constant for converting the reactant to the TS, defined analogously to eq 1, and $\nu_{\rm RC}$ is the imaginary mode corresponding to the reaction coordinate.¹⁴ Isotope effects on $K_{TS} = 1.0117$ and $v_{\rm RC} = 1.020$ indicate an ¹⁸O KIE_{calcd} = 1.032. This value is significantly larger than the ¹⁸O EIE_{calcd} (Table 1, entry 6) often invoked as the upper limit.^{1c} The inflated KIE arises from a mass-dependent $v_{\rm RC}$ which ranges from 226.5*i* cm⁻¹ for Fe¹⁶O¹⁶OH to 220.0*i* cm⁻¹ for Fe¹⁸O¹⁶OH due to a dominant contribution from the O–O stretch.¹⁴ It remains to be seen whether similar effects upon $\nu_{\rm RC}$ contribute to ¹⁸O KIEs on metal-O₂ binding reactions,¹⁷ underscoring the value of the DFT calculations in interpreting heavy atom KIEs.

That the measured ¹⁸O KIE is significantly smaller than the ¹⁸O $\mathrm{KIE}_{\mathrm{calcd}}$ further argues that O–O heterolysis is not the rate-limiting step in H₂O₂ activation by HRP, as commonly assumed.^{3–5} Shintaku et al. have also recently challenged this assumption on the basis of rapid kinetic studies.^{4b} Reversible O-O cleavage prior to a rate-limiting transformation of compound I is consistent with ¹⁸O incorporation from H_2O into the unreacted H_2O_2 ; this is because of the *competitive* nature of the isotope fractionation measurements which probe steps beginning with encounter up to and including the first irreversible step.^{1c} Future studies of HRP mutants and other heme peroxidases may elucidate the mechanism of ¹⁸O-scrambling in the context of the steady-state enzyme kinetics.

In summary, this first-of-a-kind study of enzymatic H_2O_2 activation has yielded two major findings: (1) O-O cleavage is not the rate-limiting step in the reaction of H₂O₂ with HRP. The observed ¹⁸O scrambling from labeled H₂O into H₂O₂ indicates that reversible O–O heterolysis should be considered a possibility. (2) DFT calculations allow prediction of an ¹⁸O KIE for O-O heterolysis that is larger than the ¹⁸O EIE, not smaller as often assumed.1c This result has important ramifications for interpreting ¹⁸O KIEs upon reactions of H_2O_2 and O_2 -utilizing enzymes as well as synthetic compounds.1c,2b Continued application of the approach outlined here is needed to enhance our understanding of fundamental oxidative reactivity and to refine the methods used to computationally model essential steps in enzyme catalysis.

Acknowledgment. We are grateful for support provided by the NSF: Grants CHE-0449900 (J.P.R) and CHE-0610183 (C.J.C.), Research Corp. CS1461 (J.P.R.), and Alfred P. Sloan Foundation BR-4735 (J.P.R.).

Supporting Information Available: Computational details and vibrational frequencies. This material is available free of charge via the Internet at http://pubs.acs.org.

References

- (a) Bigeleisen, J. Isotope Effects in Chemistry and Biology; Kohen, A., Limbach, H. H., Eds.; CRC Press: Boca Raton, 2005; p 1–39. (b) Wolfsberg, M. Isotope Effects in Chemistry and Biology; Kohen, A., Limbach, H. H., Eds.; CRC Press: Boca Raton, 2005; p 89–117. (c) Roth, J. P.; Klinman, J. P. Isotope Effects in Chemistry and Biology; Kohen, A., Limbach, H. H., Eds.; CRC Press: Boca Raton, 2005; p 645-669.
- (a) Huskey, W. P., In *Enzyme Mechanism from Isotope Effects*, Cook, P. F., Ed.; CRC Press: Boca Raton, 1991 p 37–72. (b) Roth, J. P. *Curr. Opin.* Chem. Biol. 2007, 11, 142.
- (a) Baek, H. K.; Van Wart, H. E. J. Am. Chem. Soc. 1992, 114, 718. (b)
 Rodriguez-Lopez, J. N.; Gilabert, M. A.; Tudela, J.; Thorneley, R. N. F.;
 Garcia-Canovas, F. Biochem. 2000, 39, 13201. (c) Newmyer, S. L.; Ortiz de Montellano, P. R. J. Biol. Chem. 1995, 270, 19430.
- (4) (a) Rodriguez-Lopez, J. N.; Lowe, D. J.; Hernandez-Ruiz, J.; Hiner, A. N.; Garcia-Canovas, F.; Thorneley, R. N. J. Am. Chem. Soc. **2001**, *123*, 11838. (b) Shintaku, M.; Matsuura, K.; Yoshioka, S.; Takahashi, S.; Ishimori, K.; Morishima, I. J. Biol. Chem. 2005, 280, 40934.
- (5) Jones, P.; Durford, H. B. J. Inorg. Biochem. 2005, 99, 2292.
 (6) (a) Derat, E.; Shaik, S.; Rovira, C.; Vidossich, P.; Alfonso-Prieto, M. J. Am. Chem. Soc. 2007, 129, 6346. (b) Derat, E.; Shaik, S. J. Phys. Chem. B. 2006, 110, 10526. (c) Wirstam, M.; Blomberg, M. R. A.; Siegbahn, P. E. M. J. Am. Chem. Soc. 1999, 121, 10178. (d) Filizola, M.; Loew, G. H. J. Am. Chem. Soc. 2000, 122, 18.
- (7) (a) Chen, H.; Moreau, Y.; Derat, E.; Shaik, S. J. Am. Chem. Soc. 2008, 130, 1953. (b) Kumar, D.; De Visser, S. P.; Shaik, S. J. Am. Chem. Soc. 2005, 127, 8204. (c) Zheng, J.; Wang, D.; Thiel, W.; Shaik, S. J. Am. Chem. Soc. 2006, 128, 13204.
- (8) Poulos, T. L.; Kraut, J. J. Biol. Chem. 1980, 255, 8199.
- (9) (a) Wojciechowski, G.; Ortiz de Montellano, P. R. J. Am. Chem. Soc. 2007, 129, 1663. (b) Watanabe, Y.; Nakajima, H.; Ueno, T. Acc. Chem. Res. 2007. 40. 554.
- (10) HRP isozyme C (Type VI) and other chemicals were purchased from Sigma and used without purification. $^{18}\text{O-water}$ (>95.0 atom %) was obtained from Promy chemicals. H_2O_2 (30%) from Fisher was used as received; the concentration was determined from the $\varepsilon_{240 \text{ nm}} = 43.6 \text{ M}^{-1} \text{ cm}^{-1}$
- (11) H₂O₂ solutions (0.5–2.0 mM) were stirred with >10 equiv Ce^{IV}(SO₄)₂ in 10-20% H₃PO₄ (20 min). The O₂ produced was collected under dynamic vacuum. Determination of the gas pressure, after converting to CO2, agreed precisely with that expected based on the initial [H₂O₂]. As described in an early report (Cahill, A. E.; Taube, H. J. Am. Chem. Soc. 1952, 74, 2312.) the O₂ had the same isotope composition as the H₂O₂. $R_0 = 1.02196 \pm$ 0.00067 vs. standard mean ocean water (SMOW) was determined from >20 independent measurements.
- (12) Analyses provided by the Environmental Isotope Laboratory, Univ. of Waterloo.
- (13) (a) Jin, N.; Bourassa, J. L.; Tizio, S. C.; Groves, J. T. Angew. Chem., Int. Ed. 2000, 39, 3849. (b) Nam, W.; Choi, S. K.; Lim, M. H.; Rohde, J.-U.; Kim, I.; Kim, J.; Kim, C.; Que, L. Angew. Chem., Int. Ed. 2003, 42, 109. (c) Furutachi, H.; Hashimoto, K.; Nagatomo, S.; Endo, T.; Fujinama, S.; Watanabe, Y.; Kitagawa, T.; Suzuki, M. J. Am. Chem. Soc. 2005, 127, 4550
- (14) Details are provided as Supporting Information.
- (15) Frisch, M. J.; et al. Gaussian 03; Gaussian, Inc.: Wallingford, CT, 2004.
- (16) McElvoy, J. P.; Brudvig, G. W. Chem. Rev. 2006, 106, 4455.
 (17) Popp, B. V.; Wendlandt, J. E.; Landis, C. R.; Stahl, S. S. Angew. Chem., Int. Ed. 2007, 46, 601.

JA802098C